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delay of plasticity
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The propagation of waves in rods is consideredtakito account the delay of plasticity property.
It is assumed that alastic-visco-plastic materighdvior is governed by the Cotrell’s delay of
plasticity condition. Simple numerical method faiving such problems is proposed. It is shown
that this method allows obtaining solutions for Re&botnov’s [I] plasticity theory. Our numerical
results are compared with analytical solution fas theory, obtained in [2].

§ 1. Many experimental studies are devoted to tlenpmenon of delay of plasticity and relate
mostly to quasi-dynamics range of loading r&e There are several theoretical studies [4—F5],
which contain definite models for description oflajeof plasticity property for propagation of
waves.

On the basis of dislocations theory and experim¥ntsN. Rabotnov proposed a theory of elastic
plastic medium with delay of plasticity [1]. Accang to this theory the transfer of material from
elastic to plastic state happens instantly undere@st plasticity condition. This leads to
appearance of strong shock waves which interatt élitstic and [plastic waves and provide rather
complicated picture of wave motion. Analytical g@a can be constructed only for the case of
simplest boundary conditions and idealized Prastdtin-stress diagram [2].

To obtain solutions fo real strain-stress diagramseed to use numerical methods. Multiple
various shock waves in real problems make impassidtact consideration of all shocks.
Therefore it needs to introduce some modified rhgichl relations in order to describe the
transfer from elastic to plastic state. This letdthe becessity of definite smoothing of shocks an
to possibility of through calculations.
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In general, if real transfer is almost instant thiems possible not to care about its adequate
description. It is enough that introduced additidrems of equations were suffucuently small and
led to required smoothing of shocks (for instarin&roduction of artificial viscosity in case of
ideal gas).

During plastic deformation of solids the viscousx#s affect significantly onto propagation of
waves and the layer of transfer from elastic tefdestate has much more thickness than in gases.
Therefore it is possible in spite of poor experitabndata to introduce such rheological
modificated models which reflect qualitatively méé behavior in plastic state and
simultaneously contain some freedom for quatitatilescription of experimental data. For
materials with neglidgable dissipation such freedwmay be used for simplification of solution
process. This allows to use one and the same ncatheniethod and besides one and the same
computer code in both cases.

The Cotrell’s plasticity condition read:

1
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where O is the static yield Iimit;t1 u N are experimental constants, which are dependent on

temperaturd’; t is time; O is stressH(Zz) is Heavyside’s function.

Following Yu. N. Rabotnov [l], assume that while tt@ndition (1) is not fulfilled, the material
ibehavior is described by Hooke’s law, but if trendition is fulfilled then material transfers into
plastic state. Assume that plastic state is desdribt the Sokolovsky-Malvern equations
accounting the influence of strain rate on lowezldilimit and some other special fwatures of
elastic plastic wave propagatids].[Equation of state can be written in unified form

de _100 1 .
_ —_ 2
% E ot +T H(®)H(k)F(k)sigrno (2

0= jq)(G,T)dt— t,, K =|ol-f(|g])

Here the dependena = f (€) relate to static strain-stress diagram of uniakiating, F(z)is a

function of viscosity,E is Young’s moduleT is viscosity constant measured in seconds.
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Consider flat waves propagation in a rod of matesiddjected to equation of state (2). Adding to
Eqg. (2) the momentum equation and relation betvetiein and velocity

do _ v 0E_0v ®)
ox ot ot 0x

We get closed system of equations for descriptibmedium motion. Introduce dimensionless
variables:

Here | is the length of rodc = E/pis an elastic wave velocityp is a density,€, is a

deformation, related to yield limit. Farther thenginsionless variables are used and hats above
variables are droped. Initial conditions are taksv =0 =€ =0 att <(0. Boundary conditions
are taken in general forem:

Al%+A2v+A 0=0,t) , aa X=0 4)

Bl%+BZV+Bgc:cp2(t), at x=1

At A, 20 or B, #0 additional conditions are requiretl=0, V|, .o = Vo, V|-, = U,

§ 2. System of equations (2)—(3) has main linearwih non-differential terms? Which possibly
are having jumps. This system differs from the exysbf equations considered in [6] only by the
non-differential term with multiplietH(®), which is relevant to delay of plasticity. Deseb
system of equations has following characteristiatiens:

dxFdt=0 : dvF¥do =+oddt,

dx=0: de =do+oddt, (5)
where
0=—, ®=H(O)H(K)sigro

TC

Consider shocks, which may exist in medium descrifyefq. (2). The system of equations (2)—
(3) is devergent and it is possible to build theegalized solutions theory and to get necessary
jump conditions providing uniqueness of generaligetition [7, p. 485]. Using such approach
find jump conditions:

D[v]+[c]=0 , D[o]+[v]=0 , D[e]+[v]=0 (6)
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where D =dx/dt is a velocity of shock propagatiofnu] =u’ — U is ajump ofU. From
condition of non-trivial solution existance for s of equations (6) follows, thdd = £1, i. e.
strong jump waves propagate only with elastic waslacity. Coinsidence of shock tracks with
characteristic lines allows using (5) and (6) getnte as for linear systems) differential equation
for intensity of strong jump wave. But in contrastelastic medium, where the jumps may appear
only due to jumps in boundary conditions, in thesecainder consideration it is possible the
appearance of strong shock waves even under snimmihdary conditions. This becomes
possible, if for linedx + dt = 0 the condition® = 0 is fulfilled. For instance, when elastic wave
propagates along undisturbed rod, the condi@w O is fulfilled on the linex =t —t, (,is the
time of delay of plasticity ax =0). In this case the equation for stress behind wavet
X=t-t;is

40" _ s @)
dt

Because stres§  and deformatior€~ before wave front are constant whilE™ is decreasing

do” /dt <0, along the considered line the jump is developatghe time instant = t, it is
equal to zero and with time its absolute value gr@simptotically tending to limiting value

|0_ |—1. This jump propagates and reflects, collides waither jumps, arising due to boundary

jumps. Created due to collisions jumps are propagatith the same velocitied = +1 and their
intensities are defined according to (6).

Remark that when the line of transfer to plastidest® = 0) does not coinside with lines
dx+dt =0, itis line of jump in first derivatives of solutigi. e. in this case wave of delay of
plasticity will be a wave of weak jump. Lines wikh = O are the elastic unloading or secondary
loading lines and on such lines the jump have sgclamivatives of solution (see. [6]). Such weak
character of jumps allows to refuse from detailedsideration of multiple areas separated by
elastic, plastic and plastic delay waves and tdyape through methods of calculation, accounting
only one type of jumps which propagates with etastave velocity. Due to this the solution
algorithm is simplified in comparison with algonitis based on Yu. N. Rabotnov’s theory.

For numerical solution of equations (2)—(3) thddwliing characteristic finite-difference scheme
is used [6] (see Egs. (5)):

(v-0)jii = (v=0)}, =3P} ?h
(V+0):—(v+0)|t =3, (®)
(e-0)i—(e-0); =3®; 3 h.

i+l

Here | and j are numbers of characteristic lines in positivd apgative directions. Creating
finite difference grid.
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Calculations using scheme (8) are performed layeliapgr along characteristic lines of positive
inclination. For solving of the system of equatidB$ the iterations are used on each step. As
usual, it is only one iteration is required, beeaathers practically useless. The state of matetial
definite grid point is checked by conditiof@> 0,0 <0 u K > 0,K < 0. The scheme (8) has
second order accuracy and its local stability mapioved.

So the numerical solution of problems based ongseg system of equations is appeared much
better than solution of the same problems usingttbery of elastoplasticity. Therefore the use of
equations (2)—(3) is of sense also for materiath weglectable influence of strain rate on lower
yield limit. To do this the equations for elastilagtic materials are supplied by artifitial small

terms according to the law (2Function F(K) and parameterd =1/ CT are chosen so that
numerical solution tends quickly to the solutiortheut additional terms. Asimptotic behavior of

solution at® >> 1 is shown in §] and it is pointed there th&t(K ) = K*? is a good choice

Value & should be defined from condition of geometric $amily of solution. In dimensionless

variables it means that it needs to fidd which makes insensitive the solution to its farth
growth excluding area of high solution gradientamjamp lines. In practical calculations it gives

the valued =5C0—10C, the change in solution is near 1 % in this case.

It should be noted that too big values®fis not desirable because it requires to decréestme
step and hence leads to the increase of computaimmk. Investigation of stability of difference
scheme (8), provided for ideal plasticity stresaistdiagram indicates that the scheme is stable

under conditiordh < 1. This also restricts the valu® in practical untegration.

Proposed method is used for solving problems dfdaal elastic plastic rods without accounting
of delay of plasticity and good results are obtdif&.

§ 3. Consider some numerical results. In order teckithe validness of made conclusions is
considered the problem about wave propagation dnassuming that one side of rod £ 1)is

fixed, while anotheX = 0) suddenly starts to move with constant velodity= V,. Assuned
that material has linear hardening:

€ o<l
at
k(s-1 o>1

Analytical solution of this problem is given in [2]
Fig.1 shows the comparison of dependence if time atX =1 for two solutions: solid line
corresponds to numerical solution by proposed niktiwhile the dashed line corresponds to

known analytical solution [2]. Fig. 2 shows junipels in analytical solution on the pla(nx,t)
for considered example. In calculaticks02; n=1; t,c/e=1; d=64; v,=2; h=0002¢.
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It easy to see that both solutions coinside insavgth constan deformation. In stead of jumps in
numerical solution we get areas of fast but smoahation of solution. Second example is
calculated for real strain-stress diagram takennfaterial ‘Crans-3”, which is approximated by

piecewise-linear curve. Constants in Cotrell's dal&yplasticity criterion (1) are calculated using

experimental data [9] for range of delay timdL ™" —107* sec. It is assuned that

n=5t, = 107*° sec. Boundary conditions are the same as in first exampitV, = 135.

Fig. 3 shows the change of deformation and streime atX = 0.8. Instant jumps correspond to
elastic shocks forced by delay of plasticity white area of fast growth corresponds to plastic
wave. In this example the areas of plastic defaonatare appeared only after reflection of wave
from fixed side of the rod in spite of the factttti@e stress at another (moving) side of rod exceed
the static yield limit [0|= 135). The velocity of unloading wave due to delay tedspicity is
almost coinsided with the velocity of elastic wavélerefor the picture of wave motion in the
plane(x, t) is completely different from depicted in Fig. 2.
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